Operating and Troubleshooting the NetworkNow that all services are in effect operational at this point, it is time to take a look at the new RTPCom network through the eyes of those who will operate it. In truth, deploying the new services is rather easy; managing them is a different story. Then there is the important aspect of securing the infrastructure. New protocols and new services open new doors to possible attacks. These attacks could endanger both IPv4 and IPv6 infrastructures. Securing the IPv6 NetworkUntil its expansion into IPv6 under the design presented so far, RTPCom was relatively protected from security threats. In the case of IPv4 service, RTPCom is not concerned at all with the customer traffic at layer 3, it is all encapsulated in PPP and L2TP. RTPCom has minimal provisioning responsibilities and user protection against attacks, if any is provided by the ISPs. In this context, RTPCom's infrastructure is not exposed to outside traffic and attacks. The IPv6 service deployment changes completely the service model and with that it changes the security challenges. RTPCom is now switching the customer traffic at layer 3 throughout its network. This mode of operation exposes its infrastructure to attacks from the Internet as well as attacks sourced by its own customers. RTPCom is now responsible for customer provisioning and also for protecting him to a certain extent. The additional services, such as multicast, open the door to multiple types of threats. In this case, RTPCom has to implement a consistent and complete set of security policies that protects the IPv6 services as well as the IPv4 ones. RTPCom's main concern is to secure its infrastructure. It will secure its access layer from attacks originated by its customers and it will secure its Edge from attacks originated by Internet hosts. Another area of concern is the data center in each L1 POP. It contains resources that are vital to the proper operation of various services and their management. Securing the AccessRTPCom identified the following security concerns at the access layer:
The important thing to remember is that in RTPCom's case, IPv4 facilitates IPv6 attacks sourced through its customers. IPv6 over IPv4 tunnels set up through the IPv4 service are invisible to RTPCom. Such tunnels can prove to be back doors to its IPv6 service for external hackers. These four threats are addressed through the following policies and their respective implementations:
The implementation of these policies is shown in the configuration of NY-10-12-16 in Example 14-13. Example 14-13. Relevant Security Configuration of Access Router (NY-10-12-16)
RTPCom's operations team is also concerned with attack vectors enabled by IPv6's extension headers. Routing headers are a particular concern. They intend to filter out packets with Type 0 (Source Route) routing header while the Type 2 (MIPv6) RH are allowed for Mobile IPv6 service. This security policy is implemented by adding the following line under all security ACLs defined: deny ipv6 any any routing-type 0 RTPCom decided to delay defining policies that address the other extension header threats until those threats are better understood. Securing the EdgeAt the network edge, RTPCom peers with various ISPs. In their case, link-local attacks are less likely, even though they still are possible. On the other hand, attacks in a global scope are significant because of the exposure to the Internet. RTPCom identified the following threats in this part of its network:
These threats were already addressed while implementing various IPv6 services, so it is just a matter of adding the following final touches:
The practical implementation of these policies is straightforward based on the examples already given for the access layer. Securing the Data CenterA third area of security concern in RTPCom's network is the data center that hosts resources critical to its service offering. A first level of defense is provided by the perimeter security policies implemented at the access and edge layers. On the other hand, these resources require specific protection beyond layer 3, too. To prevent attacks on the data center servers, RTPCom leverages PIX Firewalls upgraded to release 7.0 for IPv6 support. It also deploys the standard host protection policies on each of the servers. For more details on these mechanisms, see Chapter 9 of this book. The multicast servers require particular attention because they can be accessed by the content providers. This is done over dedicated circuits to an access router connecting to server interfaces different than the ones used to transmit the multicast traffic. RTPCom has to treat the server as an unsecured resource. For this reason it will have to control the unicast traffic it receives from the servers. The same ACLs used at the access layer can be applied in this case. RTPCom will have to continuously update its security policies based on the experiences learned operating IPv6. The dynamic character of these policies is also driven by the evolution of the existent IPv6 services and the emergence of new ones with their own security threats. Managing the NetworkBecause most of the network elements are dual stack, RTPCom will continue to manage its network mostly over IPv4. The CiscoWorks NMS currently in use is upgraded to the latest release to leverage its IPv6 capabilities. NetFlow will be particularly used to monitor the traffic while Cisco IP SLA will be used for performance management. NetFlow captured data is sent to the collectors located in the data centers over IPv4. For topology mapping and IPv6 connectivity, the NOC team is testing Nagios. See Chapter 10, "IPv6 Network Management," for details on all these tools and their use. TroubleshootingAfter running the IPv4 for several years, RTPCom's network operations team defined clear processes for troubleshooting and resolving most common problems. IPv6's characteristics and the design of the services deployed require new troubleshooting methodologies that are significantly different from the ones used for the IPv4 services. ProvisioningOne of the rather new aspects of the IPv6 services is RTPCom's responsibility for customer provisioning. After a customer's line was configured based on the services it subscribed to and the physical interface is verified to be up, the first step in gaining access is to acquire the prefixes assigned. The investigation of the proper completion of this step should be at the top of the list when troubleshooting customer connectivity. For customers that are assigned /64 prefixes, the operator can use the following troubleshooting steps:
For customers that are assigned /56 prefixes via DHCP-PD, the operator can use the following troubleshooting steps:
Note Debugs are a last resort troubleshooting tool on production routers because of their impact on the router's performance. It is also recommended that the debugging output is sent to the log rather than the console or terminal. With the prefix assigned to the clients, the only thing left to verify is that they are reachable via ping from the access router. Unicast Routing and ForwardingTroubleshooting IPv6 unicast routing and forwarding is similar to troubleshooting IPv4. Each routing protocol can be verified independently. The BGP information on router NY-10-0-1 is shown in Example 14-14. Example 14-14. IPv6 BGP Information on Router NY-10-0-1
The BGP information can be viewed separately for each address family, as shown in Example 14-15. Example 14-15. IPv6 BGP Information for the Unicast Address Family on Router NY-10-0-1
Similarly, the OSPFv3 process can be verified, as shown in Example 14-16. Example 14-16. OSPFv3 Information on Router NY-10-0-1
Finally, the routing tables will indicate whether the network is operating properly from that perspective, as shown in Example 14-17. Example 14-17. IPv6 Routing Table of Router NY-10-0-1
If routing was proven to be consistent with the design but connectivity was not reestablished, it is necessary to troubleshoot the forwarding path. Once again, the methodologies used are similar to the ones used in IPv4. Ping and traceroute for different destinations and from different sources will help narrow down the problem. If a problem router shows no routing issues, its routing information should be matched with the forwarding one. In the case of NY-10-0-1 and prefix 2600:A010::/28, the CEF information is as follows: NY-10-0-1#show ipv6 cef 2600:A010::/28 detail
2600:A010::/28 RIBfib
nexthop FE80::20F:34FF:FEB2:FA40 TenGigabitEthernet9/1
nexthop FE80::20F:34FF:FEB2:F980 TenGigabitEthernet9/2 The IPv6 forwarding activity can be reviewed with the help of show ipv6 traffic. Troubleshooting IPv6 unicast routing and forwarding should present no challenge for the experienced RTPCom NOC team. It can easily leverage the knowledge accumulated operation the IPv4 services. Multicast Routing and ForwardingConcept- and experience-wise, the multicast service is new to the RTPCom operations team. In preparation for this deployment, they went through technology training. Chapter 6 provides the technology details alongside a practical example of how troubleshooting is done. Routers rely on the underlying unicast routing protocols to make multicast control or forwarding plane decisions. For this reason, the first step in troubleshooting multicast should the verification that the network is converged an operational from the unicast perspective. In the case of the L2 POP routers connecting to the backbone, it is worth specifically checking the prefixes advertised via BGP for IPv6 multicast (NY-10-0-1), as shown in Example 14-18. Example 14-18. IPv6 BGP Information for the Multicast Address Family on Router NY-10-0-1
The multicast-specific troubleshooting should start with the verification of the proper operation of the involved protocols (MLD and PIM). The relevant information on router NY-10-12-16 is shown in Example 14-19. Example 14-19. MLD Information on Access Router NY-10-12-16
The PIM activity can be monitored with the help of the command show ipv6 pim traffic. With the control protocol shown operational, it is time to move on to verify the multicast topology, as shown in Example 14-20. Example 14-20. PIM Information on Access Router NY-10-12-16
This output reveals if the multicast group (2600:A002:00DD:1000::101,FF3E:1::1) is seen by NY-10-12-16 and if customers subscribed to it (interface ATM1/0.10). The forwarding information in Example 14-21 can further be compared with the control-plane one. Example 14-21. Multicast Forwarding Information on Access Router NT-10-12-16
This output provides the forwarding statistics, too. For more information on useful multicast troubleshooting commands, review Chapter 6 of this book. Debugs are useful tools in troubleshooting the dynamic aspects of problems. However, they should be used with care because of their impact on the network equipment resources. Other tools, such as sniffers, can prove useful in providing the answer to what exactly is happening on a link. |