EVAL.CXX

/******************************Module*Header*******************************\ 
* Module Name: eval.cxx
*
* Evaluator stuff
*
* Copyright (c) 1994 Microsoft Corporation
*
\**************************************************************************/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>
#include <time.h>
#include <windows.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glaux.h>

#include "sscommon.h"
#include "sspipes.h"
#include "eval.h"

//#define EVAL_DBG 1

typedef enum {
X_PLANE = 0,
Y_PLANE,
Z_PLANE
};

#define EVAL_VSIZE 3 // vertex size in floats

#define TMAJOR_ORDER 2
#define TMINOR_ORDER 2

#define VDIM 3
#define TDIM 2

//forwards
#if EVAL_DBG
static void DrawPoints( int num, POINT3D *pts );
#endif
static void RotatePointSet( POINT3D *inPts, int numPts, float angle, int dir,
float radius, POINT3D *outPts );
static void ExtrudePointSetDir( POINT3D *inPts, int numPts, float *acPts,
int dir, POINT3D *outPts );


/**************************************************************************\
* EVAL
*
* Evaluator constructor
*
\**************************************************************************/

EVAL::EVAL( BOOL bTex )
{
bTexture = bTex;

// Allocate points buffer

// might want to use less than max in some cases
int size = MAX_USECTIONS * MAX_UORDER * MAX_VORDER * sizeof(POINT3D);
pts = (POINT3D *) LocalAlloc( LMEM_FIXED, size );
SS_ASSERT( pts != NULL, "EVAL constructor\n" );

// Alloc texture points buffer

if( bTexture ) {
size = MAX_USECTIONS * TEX_ORDER * TEX_ORDER * sizeof(TEX_POINT2D);
texPts = (TEX_POINT2D *) LocalAlloc( LMEM_FIXED, size );
SS_ASSERT( texPts != NULL, "EVAL constructor\n" );
}

ResetEvaluator( bTexture );
}

/**************************************************************************\
* ~EVAL
*
* Evaluator destructor
*
* Frees up memory
*
\**************************************************************************/

EVAL::~EVAL( )
{
LocalFree( pts );
if( bTexture )
LocalFree( texPts );
}

/**************************************************************************\
* Reset
*
* Reset evaluator to generate 3d vertices and vertex normals
*
\**************************************************************************/

void
ResetEvaluator( BOOL bTexture )
{
if( bTexture ) {
glEnable( GL_MAP2_TEXTURE_COORD_2 );
}
glEnable( GL_MAP2_VERTEX_3 );
glEnable( GL_AUTO_NORMAL );
glFrontFace( GL_CW ); // cuz
// if mixing Normal and Flex, have to watch out for this, cuz normal
// needs CCW
}

/**************************************************************************\
* SetTextureControlPoints
*
* Set texture control point net
*
* This sets up 'numSections' sets of texture coordinate control points, based
* on starting and ending s and t values.
*
* s coords run along pipe direction, t coords run around circumference
*
\**************************************************************************/

void
EVAL::SetTextureControlPoints( float s_start, float s_end,
float t_start, float t_end )
{
int i;
TEX_POINT2D *ptexPts = texPts;
GLfloat t_delta = (t_end - t_start) / numSections;
GLfloat t = t_start;

// calc ctrl pts for each quadrant
for( i = 0; i < numSections; i++, ptexPts += (TDIM*TDIM) ) {
// s, t coords
ptexPts[0].t = ptexPts[2].t = t;
t += t_delta;
ptexPts[1].t = ptexPts[3].t = t;
ptexPts[0].s = ptexPts[1].s = s_start;
ptexPts[2].s = ptexPts[3].s = s_end;
}
}

/**************************************************************************\
* SetVertexCtrlPtsXCTranslate
*
* Builds 3D control eval control net from 2 xcObjs displaced along the
* z-axis by 'length'.
*
* First xc used to generate points in z=0 plane.
* Second xc generates points in z=length plane.
* ! Replicates the last point around each u.
*
\**************************************************************************/

void
EVAL::SetVertexCtrlPtsXCTranslate( POINT3D *pts, float length,
XC *xcStart, XC *xcEnd )
{
int i;
POINT2D *ptsStart, *ptsEnd;
POINT3D *pts1, *pts2;
int numPts = xcStart->numPts;

numPts++; // due to last point replication

ptsStart = xcStart->pts;
ptsEnd = xcEnd->pts;
pts1 = pts;
pts2 = pts + numPts;

for( i = 0; i < (numPts-1); i++, pts1++, pts2++ ) {
// copy over x,y from each xc
*( (POINT2D *) pts1) = *ptsStart++;
*( (POINT2D *) pts2) = *ptsEnd++;
// set z for each
pts1->z = 0.0f;
pts2->z = length;
}

// Replicate last point in each u-band
*pts1 = *pts;
*pts2 = *(pts + numPts);
}

/**************************************************************************\
* ProcessXCPrimLinear
*
* Processes a prim according to evaluator data
*
* - Only valid for colinear xc's (along z)
* - XC's may be identical (extrusion). If not identical, may have
* discontinuities at each end.
* - Converts 2D XC pts to 3D pts
*
\**************************************************************************/

void
EVAL::ProcessXCPrimLinear( XC *xcStart, XC *xcEnd, float length )
{
if( length <= 0.0f )
// nuttin' to do
return;

// Build a vertex control net from 2 xcObj's a distance 'length' apart
// this will displace the end xcObj a distance 'length' down the z-axis
SetVertexCtrlPtsXCTranslate( pts, length, xcStart, xcEnd );

Evaluate( );
}

/**************************************************************************\
* ProcessXCPrimBendSimple
*
* Processes a prim by bending along dir from xcCur
*
* - dir is relative from xc in x-y plane
* - adds C2 continuity at ends
*
\**************************************************************************/

void
EVAL::ProcessXCPrimBendSimple( XC *xcCur, int dir, float radius )
{
POINT3D *ptsSrc, *ptsDst;
static float acPts[MAX_XC_PTS+1];
int ptSetStride = xcCur->numPts + 1; // pt stride for output pts buffer

// We will be creating 4 cross-sectional control point sets here.

// Convert 2D pts in xcCur to 3D pts at z=0 for 1st point set
xcCur->ConvertPtsZ( pts, 0.0f );

// Calc 4th point set by rotating 1st set as per dir
ptsDst = pts + 3*ptSetStride;
RotatePointSet( pts, ptSetStride, 90.0f, dir, radius, ptsDst );

// angles != 90, hard, cuz not easy to extrude 3rd set from 4th

// Next, have to figure out ac values. Need to extend each xc's points
// into bend to generate ac net. For circular bend (and later for general
// case elliptical bend), need to know ac distance from xc for each point.
// This is based on the point's turn radius - a function of its distance
// from the 'hinge' of the turn.

// Can take advantage of symmetry here. Figure for one xc, good for 2nd.
// This assumes 90 deg turn. (also,last point replicated)
xcCur->CalcArcACValues90( dir, radius, acPts );

// 2) extrude each point's ac from xcCur (extrusion in +z)
// apply values to 1st to get 2nd
// MINUS_Z, cuz subtracts *back* from dir
ExtrudePointSetDir( pts, ptSetStride, acPts, MINUS_Z,
pts + ptSetStride );

// 3) extrude each point's ac from xcEnd (extrusion in -dir)
ptsSrc = pts + 3*ptSetStride;
ptsDst = pts + 2*ptSetStride;
ExtrudePointSetDir( ptsSrc, ptSetStride, acPts, dir, ptsDst );

Evaluate();
}

/**************************************************************************\
* eval_ProcessXCPrimSingularity
*
* Processes a prim by joining singularity to an xc
*
* - Used for closing or opening the pipe
* - If bOpening is true, starts with singularity, otherwise ends with one
* - the xc side is always in z=0 plane
* - singularity side is radius on either side of xc
* - adds C2 continuity at ends (perpendicular to +z at singularity end)
*
\**************************************************************************/

void
EVAL::ProcessXCPrimSingularity( XC *xcCur, float length, BOOL bOpening )
{
POINT3D *ptsSing, *ptsXC;
static float acPts[MAX_XC_PTS+1];
float zSing; // z-value at singularity
int ptSetStride = xcCur->numPts + 1; // pt stride for output pts buffer
int i;
XC xcSing(xcCur);

// create singularity xc - which is an extremely scaled-down version
// of xcCur (this prevents any end-artifacts, unless of course we were
// to zoom it ultra-large).

xcSing.Scale( .0005f );

// We will be creating 4 cross-sectional control point sets here.

if( bOpening ) {
ptsSing = pts;
ptsXC = pts + 3*ptSetStride;
} else {
ptsSing = pts + 3*ptSetStride;
ptsXC = pts;
}

// Convert 2D pts in xcCur to 3D pts at 'xc' point set
xcCur->ConvertPtsZ( ptsXC, 0.0f );

// Set z-value for singularity point set
zSing = bOpening ? -length : length;
xcSing.ConvertPtsZ( ptsSing, zSing );

// The arc control for each point is based on a radius value that is
// each xc point's distance from the xc center
xcCur->CalcArcACValuesByDistance( acPts );

// Calculate point set near xc
if( bOpening )
ExtrudePointSetDir( ptsXC, ptSetStride, acPts, PLUS_Z,
ptsXC - ptSetStride );
else
ExtrudePointSetDir( ptsXC, ptSetStride, acPts, MINUS_Z,
ptsXC + ptSetStride );

// Point set near singularity is harder, as the points must generate
// a curve between the singularity and each xc point
// No, easier, just scale each point by universal arc controller !
POINT3D *ptsDst = pts;
ptsDst = bOpening ? ptsSing + ptSetStride : ptsSing - ptSetStride;
for( i = 0; i < ptSetStride; i ++, ptsDst++ ) {
ptsDst->x = EVAL_CIRC_ARC_CONTROL * ptsXC[i].x;
ptsDst->y = EVAL_CIRC_ARC_CONTROL * ptsXC[i].y;
ptsDst->z = zSing;
}

Evaluate();
}

/**************************************************************************\
* Evaluate
*
* Evaluates the EVAL object
*
* - There may be 1 or more lengthwise sections around an xc
* - u is minor, v major
* - u,t run around circumference, v,s lengthwise
* - Texture maps are 2x2 for each section
* - ! uDiv is per section !
*
\**************************************************************************/

void
EVAL::Evaluate( )
{
int i;
POINT3D *ppts = pts;
TEX_POINT2D *ptexPts = texPts;
// total # pts in cross-section:
int xcPointCount = (uOrder-1)*numSections + 1;

for( i = 0; i < numSections; i ++,
ppts += (uOrder-1),
ptexPts += (TEX_ORDER*TEX_ORDER) ) {

// map texture coords

if( bTexture ) {
glMap2f(GL_MAP2_TEXTURE_COORD_2,
0.0f, 1.0f, TDIM, TEX_ORDER,
0.0f, 1.0f, TEX_ORDER*TDIM, TEX_ORDER,
(GLfloat *) ptexPts );
}

// map vertices

glMap2f(GL_MAP2_VERTEX_3,
0.0f, 1.0f, VDIM, uOrder,
0.0f, 1.0f, xcPointCount*VDIM, vOrder,
(GLfloat *) ppts );

// evaluate

glMapGrid2f(uDiv, 0.0f, 1.0f, vDiv, 0.0f, 1.0f);
glEvalMesh2( GL_FILL, 0, uDiv, 0, vDiv);
}
}

#if EVAL_DBG
/**************************************************************************\
* DrawPoints
*
* draw control points
*
\**************************************************************************/
static
void DrawPoints( int num, POINT3D *pts )
{
GLint i;

// draw green pts for now
glColor3f(0.0f, 1.0f, 0.0f);
glPointSize(2);

glBegin(GL_POINTS);
for (i = 0; i < num; i++, pts++) {
glVertex3fv( (GLfloat *) pts );
}
glEnd();
}
#endif

/**************************************************************************\
* ExtrudePointSetDir
*
* Extrude a point set back from the current direction
*
* Generates C2 continuity at the supplied point set xc, by generating another
* point set back of the first, using supplied subtraction values.
*
\**************************************************************************/

static void
ExtrudePointSetDir( POINT3D *inPts, int numPts, float *acPts, int dir,
POINT3D *outPts )
{
int i;
float sign;
int offset;

switch( dir ) {
case PLUS_X:
offset = 0;
sign = -1.0f;
break;
case MINUS_X:
offset = 0;
sign = 1.0f;
break;
case PLUS_Y:
offset = 1;
sign = -1.0f;
break;
case MINUS_Y:
offset = 1;
sign = 1.0f;
break;
case PLUS_Z:
offset = 2;
sign = -1.0f;
break;
case MINUS_Z:
offset = 2;
sign = 1.0f;
break;
}

for( i = 0; i < numPts; i++, inPts++, outPts++, acPts++ ) {
*outPts = *inPts;
((float *)outPts)[offset] = ((float *)inPts)[offset] + (sign * (*acPts));
}
}

/**************************************************************************\
* RotatePointSet
*
* Rotate point set by angle, according to dir and radius
*
* - Put points in supplied outPts buffer
*
\**************************************************************************/

static void
RotatePointSet( POINT3D *inPts, int numPts, float angle, int dir,
float radius, POINT3D *outPts )
{
MATRIX matrix1, matrix2, matrix3;
int i;
POINT3D rot = {0.0f};
POINT3D anchor = {0.0f};

/* dir rot
+x 90 y
-x -90 y
+y -90 x
-y 90 x
*/

// convert angle to radians
//mf: as noted in objects.c, we have to take negative angle to make
// it work in familiar 'CCW rotation is positive' mode. The ss_* rotate
// routines must work in the 'CW is +'ve' mode, as axis pointing at you.
angle = SS_DEG_TO_RAD(-angle);

// set axis rotation and anchor point

switch( dir ) {
case PLUS_X:
rot.y = angle;
anchor.x = radius;
break;
case MINUS_X:
rot.y = -angle;
anchor.x = -radius;
break;
case PLUS_Y:
rot.x = -angle;
anchor.y = radius;
break;
case MINUS_Y:
rot.x = angle;
anchor.y = -radius;
break;
}

// translate anchor point to origin
ss_matrixIdent( &matrix1 );
ss_matrixTranslate( &matrix1, -anchor.x, -anchor.y, -anchor.z );

// rotate
ss_matrixIdent( &matrix2 );
ss_matrixRotate( &matrix2, (double) rot.x, rot.y, rot.z );

// concat these 2
ss_matrixMult( &matrix3, &matrix2, &matrix1 );

// translate back
ss_matrixIdent( &matrix2 );
ss_matrixTranslate( &matrix2, anchor.x, anchor.y, anchor.z );

// concat these 2
ss_matrixMult( &matrix1, &matrix2, &matrix3 );

for( i = 0; i < numPts; i ++, outPts++, inPts++ ) {
ss_xformPoint( outPts, inPts, &matrix1 );
}
}