Aggregation

Aggregation is the other, richer, reuse mechanism, in which the outer object exposes interfaces from the inner object as if they were implemented on the outer object itself. This is useful when the outer object would always delegate every call to one of its interfaces to the same interface in the inner object. Aggregation is actually a specialized case of containment/delegation, and is available as a convenience to avoid extra implementation overhead in the outer object in these cases.

Aggregation is almost as simple to implement as containment is, except for the three IUnknown functions: QueryInterface, AddRef, and Release. The catch is that from the client's perspective, any IUnknown function on the outer object must affect the outer object. That is, AddRef and Release affect the outer object and QueryInterface exposes all the interfaces available on the outer object. However, if the outer object simply exposes an inner object's interface as its own, that inner object's IUnknown members called through that interface will behave differently than those IUnknown members on the outer object's interfaces, an absolute violation of the rules and properties governing IUnknown.

The solution is that aggregation requires an explicit implementation of IUnknown on the inner object and delegation of the IUnknown methods of any other interface to the outer object's IUnknown methods.

Creating Aggregable Objects

Creating objects that can be aggregated is optional; however, it is simple to do and to do so has significant benefits. The following rules apply to creating an aggregable object:

The code fragment below illustrates a correct implementation of an aggregable object using the nested class method of implementing interfaces:

// CSomeObject is an aggregable object that implements 
// IUnknown and ISomeInterface 
class CSomeObject : public IUnknown 
{ 
    private: 
        DWORD        m_cRef;         // Object reference count 
        IUnknown*    m_pUnkOuter;    // Controlling IUnknown, no AddRef 
 
        // Nested class to implement the ISomeInterface interface 
        class CImpSomeInterface : public ISomeInterface 
        { 
            friend class CSomeObject ; 
            private: 
                DWORD    m_cRef;    // Interface ref-count, for debugging 
                IUnknown*    m_pUnkOuter;    // controlling IUnknown 
            public: 
                CImpSomeInterface() { m_cRef = 0;   }; 
                ~ CImpSomeInterface(void) {}; 
 
                // IUnknown members delegate to the outer unknown 
                // IUnknown members do not control lifetime of object 
                STDMETHODIMP     QueryInterface(REFIID riid, void** ppv) 
                {    return m_pUnkOuter->QueryInterface(riid,ppv);   }; 
 
                STDMETHODIMP_(DWORD) AddRef(void) 
                {    return m_pUnkOuter->AddRef();   }; 
 
                STDMETHODIMP_(DWORD) Release(void) 
                {    return m_pUnkOuter->Release();   }; 
 
                // ISomeInterface members 
                STDMETHODIMP SomeMethod(void) 
                {    return S_OK;   }; 
        } ; 
        CImpSomeInterface m_ImpSomeInterface ; 
    public: 
        CSomeObject(IUnknown * pUnkOuter) 
        { 
            m_cRef=0; 
            // No AddRef necessary if non-NULL as we're aggregated. 
            m_pUnkOuter=pUnkOuter; 
            m_ImpSomeInterface.m_pUnkOuter=pUnkOuter; 
        } ; 
        ~CSomeObject(void) {} ; 
 
        // Static member function for creating new instances (don't use 
        // new directly).Protects against outer objects asking for interfaces 
        // other than IUnknown 
        static HRESULT Create(IUnknown* pUnkOuter, REFIID riid, void **ppv) 
        { 
            CSomeObject*        pObj; 
            if (pUnkOuter != NULL && riid != IID_IUnknown) 
                return CLASS_E_NOAGGREGATION; 
            pObj = new CSomeObject(pUnkOuter); 
            if (pObj == NULL) 
                return E_OUTOFMEMORY; 
            // Set up the right unknown for delegation (the non-aggregation case) 
            if (pUnkOuter == NULL) 
                pObj->m_pUnkOuter = (IUnknown*)pObj ; 
            HRESULT hr; 
            if (FAILED(hr = pObj->QueryInterface(riid, (void**)ppv))) 
                delete pObj ; 
            return hr; 
        } 
 
        // Inner IUnknown members, non-delegating 
        // Inner QueryInterface only controls inner object 
        STDMETHODIMP QueryInterface(REFIID riid, void** ppv) 
        { 
            *ppv=NULL; 
            if (riid == IID_IUnknown) 
                *ppv=this; 
            if (riid == IID_ISomeInterface) 
                *ppv=&m_ImpSomeInterface; 
            if (NULL==*ppv) 
                return ResultFromScode(E_NOINTERFACE); 
            ((IUnknown*)*ppv)->AddRef(); 
            return NOERROR; 
        } ; 
        STDMETHODIMP_(DWORD) AddRef(void) 
        {    return ++m_cRef; }; 
        STDMETHODIMP_(DWORD) Release(void) 
        { 
            if (--m_cRef != 0) 
                return m_cRef; 
            delete this; 
            return 0; 
        }; 
}; 
 

Aggregating Objects

When developing an aggregable object, the following rules apply: