MNSQ= show mean-square instead of t-standardized fit statistics = Yes |
Top Up Down
A A |
The mean-square or t standardized fit statistics are shown in Tables 7, 11 to quantify the unexpectedness in the response strings, and in Tables 4, 5, 8, 9 for the fit plots.
MNSQ=N Show standardized (ZSTD) fit statistics. ZSTD (standardized as a z-score) is used of a t-test result when either the t-test value has effectively infinite degrees of freedom (i.e., approximates a unit normal value) or the Student's t-statistic distribution value has been adjusted to a unit normal value.
MNSQ=Y Show mean-square fit statistics. Use LOCAL=L for log scaling.
TABLE 7.1 TABLE OF POORLY FITTING PERSONS ( ITEMS IN ENTRY ORDER)
NUMBER - NAME -- POSITION ------ MEASURE - INFIT (MNSQ) OUTFIT
17 Rod M -1.41 2.4 A 2.2
RESPONSE: 1: 0 0 2 4 1 4 3 1 3 3 1 4 3 2 3 3 1 4 2 1
Z-RESIDUAL: -2 2 -2 -2 2 -2
Mean-square:
TABLE 9.1
-5 -4 -3 -2 -1 0 1 2 3
++-------+-------+-------+-------+-------+-------+-------+-------++
2 + | + 2
I | | |
T | | |
E | | B A |
M | | FDE C |
1 +-------------------------------|-----iIJg-Hj------G--------------+ 1
O | | e d f |
U | c| b |
T | | a h |
F | | |
I 0 + | + 0
T ++-------+-------+-------+-------+-------+-------+-------+-------++
-5 -4 -3 -2 -1 0 1 2 3
ITEM MEASURE
t standardized ZSTD:
-5 -4 -3 -2 -1 0 1 2 3
++-------+-------+-------+-------+-------+-------+-------+-------++ 2
| | A |
| | B |
I | | |
T 1 + | C + 1
E | | DE |
M | | F |
| | H |
O 0 +-------------------------------|------IJ---j------G--------------+ 0
U | | i |
T | | g h |
F | | f |
I -1 + | + -1
T | | e d |
| c| |
Z | | |
S -2 +-------------------------------|---------------------------------+ -2
T | | |
D | | b |
| | |
-3 + | + -3
| | a |
| | |
| | |
-4 + | + -4
++-------+-------+-------+-------+-------+-------+-------+-------++
-5 -4 -3 -2 -1 0 1 2 3
ITEM MEASURE